Photothermal excitation of microcantilevers in liquids
نویسندگان
چکیده
We report the selective excitation of the flexural modes of microcantilevers in aqueous solutions, by applying the photothermal excitation technique. The experiments show that a particular vibration mode can be efficiently excited by focusing the intensity-modulated laser beam on regions of high curvature of the vibration shape. In addition, the resulting resonant peaks in liquid appear distorted by an amplitude component that decreases with the frequency. This distortion produces a shift of the resonance to lower frequencies. A theoretical model based on the transformation of optical energy into mechanical energy via an intermediate thermal stage is proposed to interpret the experimental results. The theory shows that the driven oscillation of the cantilever depends on the curvature of the eigenmode at the excitation position and the heating induced by the excitation laser, which decreases with the frequency. The results reported here set the basis for efficient excitation of high vibration modes in liquids and for optimized design of optically driven microresonators. © 2006 American Institute of Physics. DOI: 10.1063/1.2205409
منابع مشابه
High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids.
Photothermal excitation is a promising means of actuating microscale structures. It is gaining increased interest for its capability to excite atomic force microscopy (AFM) microcantilevers with wide frequency bandwidth in liquid environments yielding clean resonance peaks without spurious resonances. These capabilities are particularly relevant for high speed and high resolution, quantitative ...
متن کاملPhotothermal excitation for improved cantilever drive performance in tapping mode atomic force microscopy
Photothermal excitation is an alternative cantilever drive mechanism for tapping mode atomic force microscopy. It uses a power-modulated laser focused on the cantilever to directly drive its oscillation, producing cantilever tunes that match the thermal response almost perfectly. This enables quantitatively accurate AFM imaging and viscoelastic nanomechanical mapping in all environments. In add...
متن کاملQuantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory.
The use of a piezoelectric element (acoustic excitation) to vibrate the base of microcantilevers is a popular method for dynamic atomic force microscopy. In air or vacuum, the base motion is so small (relative to tip motion) that it can be neglected. However, in liquid environments the base motion can be large and cannot be neglected. Yet it cannot be directly observed in most AFMs. Therefore, ...
متن کاملComparative dynamics of magnetically, acoustically, and Brownian motion driven microcantilevers in liquids
متن کامل
Origins of phase contrast in the atomic force microscope in liquids.
We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006